Main Article Content

Eva Hariyanti
Dandy Pramana Hostiadi
Anggreni
Yohanes Priyo Atmojo
I Made Darma Susila
Irene Tangkawarow

Abstract

Perkembangan informasi dan teknologi memerlukan teknik pengamanan yang tepat. Potensi terjadinya kebocoran data dan informasi di era digital sangat tinggi apabila tidak ditangani dengan serius. Beberapa serangan berbahaya yang terjadi adalah spam, Denial of Service Attack, ARP Poisoning, SQL Injection, U2L, R2L dan Probing. Penelitian sebelumnya telah mengenalkan pendekatan deteksi serangan berbahaya seperti menggunakan klasifikasi, klusterisasi dan analisis statistik. Namun analisis penggunaan fitur terbaik perlu dilakukan untuk mendapatkan hasil model klasifikasi yang optimal. Pada penelitian ini, menganalisis dan mencari metode seleksi fitur terbaik yang dapat diimplementasikan pada model klasifikasi berbasis machine learning untuk mendeteksi serangan di jaringan. Dataset yang digunakan adalah UNSW-NB15, dan dilakukan beberapa proses seperti data transformasi, Data normalisasi, seleksi Fitur dan Klasifikasi. Perbandingan teknik seleksi fitur yang digunakan antara lain ANOVA, UNIVARIATE dan ChiSquare. Tujuan penelitian ini adalah untuk meningkatkan akurasi, precision dan recall pada model klasifikasi Decision Tree. Hasil penelitian pengujian menunjukkan bahwa metode seleksi fitur terbaik dalam model klasifikasi adalah metode ANOVA dengan hasil nilai Area Under Curve sebesar 0.989, nilai F1-score adalah 0.999, akurasi deteksi adalah 0.999, nilai precission adalah 0.999 dan recall adalah 0.999. Hasil penelitian ini dapat digunakan untuk menyempurnakan model Intrusi Detection System berbasis machine learning.

Article Details

How to Cite
Hariyanti, E., Hostiadi, D. P., Anggreni, Yohanes Priyo Atmojo, I Made Darma Susila, & Tangkawarow, I. (2024). Analisis Perbandingan Metode Seleksi Fitur pada Model Klasifikasi Decission Tree untuk Deteksi Serangan di Jaringan Komputer. Jurnal Sistem Dan Informatika (JSI), 18(2), 208-217. https://doi.org/10.30864/jsi.v18i2.615
Section
Articles

References

J. Velasco-Mata, V. Gonzalez-Castro, E. F. Fernandez, and E. Alegre, “Efficient Detection of Botnet Traffic by Features Selection and Decision Trees,” IEEE Access, vol. 9, pp. 120567–120579, 2021, doi: 10.1109/ACCESS.2021.3108222.
F. Hussain, S. G. Abbas, I. M. Pires, S. Tanveer, U. U. Fayyaz, N. M. Garcia, G. A. Shah, and F. Shahzad, “A Two-Fold Machine Learning Approach to Prevent and Detect IoT Botnet Attacks,” IEEE Access, vol. 9, pp. 163412–163430, 2021, doi: 10.1109/ACCESS.2021.3131014.
A. Muhammad, M. Asad, and A. R. Javed, “Robust Early Stage Botnet Detection using Machine Learning,” 1st Annu. Int. Conf. Cyber Warf. Secur. ICCWS 2020 - Proc., 2020, doi: 10.1109/ICCWS48432.2020.9292395.
M. Choubisa, “A Simple and Robust Approach of Random Forest for Intrusion Detection System in Cyber Security,” pp. 5–9, 2022.
G. Zhu, H. Yuan, Y. Zhuang, Y. Guo, X. Zhang, and S. Qiu, “Research on network intrusion detection method of power system based on random forest algorithm,” Proc. - 2021 13th Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA 2021, pp. 374–379, 2021, doi: 10.1109/ICMTMA52658.2021.00087.
A. Kumar and T. J. Lim, “EDIMA: Early Detection of IoT Malware Network Activity Using Machine Learning Techniques,” IEEE 5th World Forum Internet Things, WF-IoT 2019 - Conf. Proc., pp. 289–294, 2019, doi: 10.1109/WF-IoT.2019.8767194.
H. T. Nguyen, Q. D. Ngo, D. H. Nguyen, and V. H. Le, “PSI-rooted subgraph: A novel feature for IoT botnet detection using classifier algorithms,” ICT Express, vol. 6, no. 2, pp. 128–138, 2020, doi: 10.1016/j.icte.2019.12.001.
G. Xiao, J. Li, Y. Chen, and K. Li, “MalFCS: An effective malware classification framework with automated feature extraction based on deep convolutional neural networks,” J. Parallel Distrib. Comput., vol. 141, pp. 49–58, 2020, doi: 10.1016/j.jpdc.2020.03.012.
H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, and K. K. R. Choo, “An opcode-based technique for polymorphic Internet of Things malware detection,” Concurr. Comput. Pract. Exp., vol. 32, no. 6, 2020, doi: 10.1002/cpe.5173.
G. D’Angelo, M. Ficco, and F. Palmieri, “Association rule-based malware classification using common subsequences of API calls,” Appl. Soft Comput., vol. 105, p. 107234, 2021, doi: 10.1016/j.asoc.2021.107234.
Z. S. Malek, “User behavior Pattern -Signature based Intrusion Detection,” vol. 7, pp. 549–552, 2020.
F. H. Almasoudy, W. L. Al-Yaseen, and A. K. Idrees, “Differential Evolution Wrapper Feature Selection for Intrusion Detection System,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 1230–1239, 2020, doi: 10.1016/j.procs.2020.03.438.
C. M. Ou, “Host-based Intrusion Detection Systems Inspired by Machine Learning of Agent-Based Artificial Immune Systems,” IEEE Int. Symp. Innov. Intell. Syst. Appl. INISTA 2019 - Proc., pp. 1–5, 2019, doi: 10.1109/INISTA.2019.8778269.
B. Sergey, “Intrusion Detection System and Intrusion Prevention System with Snort provided by Security Onion .,” Bachelor’s Thesis Inf. Technol. MAMK Univ. Appl. Sci., no. May, 2016.
H. Alnabulsi, M. R. Islam, and Q. Mamun, “Detecting SQL injection attacks using SNORT IDS,” Asia-Pacific World Congr. Comput. Sci. Eng. APWC CSE 2014, no. November, 2014, doi: 10.1109/APWCCSE.2014.7053873.
N. Khamphakdee, N. Benjamas, and S. Saiyod, “Improving Intrusion Detection System Based on Snort Rules for Network Probe Attacks Detection with Association Rules Technique of Data Mining,” J. ICT Res. Appl., vol. 8, no. 3, pp. 234–250, 2015, doi: 10.5614/itbj.ict.res.appl.2015.8.3.4.
A. A. A, A. Ademola, and A. A. A, “Development Of An SMS Based Alert Systemusing Object Oriented Design Concept,” vol. 3, no. 5, pp. 71–76, 2014.
S. Ouiazzane, M. Addou, and F. Barramou, “A Multi-Agent Model for Network Intrusion Detection,” ICSSD 2019 - Int. Conf. Smart Syst. Data Sci., 2019, doi: 10.1109/ICSSD47982.2019.9003119.
N. T. Pham, E. Foo, S. Suriadi, H. Jeffrey, and H. F. M. Lahza, “Improving performance of intrusion detection system using ensemble methods and feature selection,” ACM Int. Conf. Proceeding Ser., 2018, doi: 10.1145/3167918.3167951.
M. N. Aziz and T. Ahmad, “Clustering under-sampling data for improving the performance of intrusion detection system,” J. Eng. Sci. Technol., vol. 16, no. 2, pp. 1342–1355, 2021.
S. Anwar, J. M. Zain, M. F. Zolkipli, Z. Inayat, S. Khan, B. Anthony, and V. Chang, “From intrusion detection to an intrusion response system: Fundamentals, requirements, and future directions,” Algorithms, vol. 10, no. 2, 2017, doi: 10.3390/a10020039.
A. A. Megantara and T. Ahmad, “ANOVA-SVM for Selecting Subset Features in Encrypted Internet Traffic Classification,” Int. J. Intell. Eng. Syst., vol. 14, no. 2, pp. 536–546, 2021, doi: 10.22266/ijies2021.0430.48.
J. Lee, D. Park, and C. Lee, “Feature selection algorithm for intrusions detection system using sequential forward search and random forest classifier,” KSII Trans. Internet Inf. Syst., vol. 11, no. 10, pp. 5132–5148, 2017, doi: 10.3837/tiis.2017.10.024.
N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set),” In: 2015 Military Communications and Information Systems Conference (MilCIS), 2015, pp. 1–6. doi: 10.1109/MilCIS.2015.7348942.
M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “NetFlow Datasets for Machine Learning-Based Network Intrusion Detection Systems,” In: Big Data Technologies and Applications, 2021, pp. 117–135.
N. Moustafa, G. Creech, and J. Slay, “Big Data Analytics for Intrusion Detection System: Statistical Decision-Making Using Finite Dirichlet Mixture Models,” in Data Analytics and Decision Support for Cybersecurity: Trends, Methodologies and Applications, I. Palomares Carrascosa, H. K. Kalutarage, and Y. Huang, Eds. Cham: Springer International Publishing, 2017, pp. 127–156. doi: 10.1007/978-3-319-59439-2_5.
Indexed and Journal List Title by: